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velocities of the pure longitudial modes along a and b 
are 4.9 and 5.25 km s -1, respectively. 

The group velocities compiled in Tables 1 and 2 give 
information only for nonsymmetry propagation direc- 
tions. For both of the listed phonon groups, which belong 
to different wave vectors, a striking variation of Cg was 
obtained. Whereas the first group (c high) shows an g 
expected angular dependence with the tendency to reach 
low group velocities around the [110] direction, the 
second one (c~°W), obtained from edges around 0k0 
reflections, presents a surprising high change of Cg for 
the small angular changes. The behaviour is not 
understood so far and one may speculate about the 
effect of phonon focusing in elastically anisotropic 
crystals in which thermal-phonon group velocities tend 
to aggregate more around some directions than others. It 
depends on the curvature of the inverse phase velocity 
surface and is a common feature in many crystals (Every, 
1980). On the other hand, the effect could originate from 
a violation of the validity condition of the theory owing 
to greater q values. This conjecture is supported by the 
calculated wave vectors of the second group, which are 
by far higher than those of the first group. 

Along the b axis, scans were measured at RT as well 
as some degrees above and below the ferroelectric PT. 
Except for a slightly reduced intensity in the TDS 

patterns of the scans at low temperatures, no character- 
istic changes (e.g. owing to the piezoelectricity in the 
polar phase) were found within the limits of the given 
experimental resolution. 

This work has been supported in part by the BMFT 
under registration sign 03-GO3ROS-5. 
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Abstract 

This paper and the following one of the series deal with 
the counting and the construction of the crystal families 
of Euclidean space E6; this paper deals with the 
geometrically Z-reducible (gZ-red.) crystal families and 
paper XVI deals with the geometrically Z-irreducible 
(gZ-irr.) crystal familes. The method explained in 
previous papers for the construction of crystal families 
of Euclidean space E 5 has been adopted; for the reader's 
convenience, the main lines of this method are recalled. 
The method depends on two basic elements, namely, all 
the splittings of space E 6 into two-by-two orthogonal 
subspaces and the list of the gZ-irr, crystal families of 
one- to five-dimensional spaces. Besides the counting of 
the crystal families, this new geometrical method gives 
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the names of these families and both the symbols and 
orders of their holohedries. The name of the crystal 
family directly introduces its 'conventional'-cell geome- 
trical description and the various parameters (lengths and 
angles) defining the cell. 

Introduction 

In two previous papers (Veysseyre, Weigel & Phan, 
1993; Weigel & Veysseyre, 1993), we introduced a 
general method for constructing the crystal families of 
Euclidean space E" and emphasized the results for the 
crystal families of Euclidean spaces E 1 to E 5. This 
method is based on: (1) the consideration of every 
possible partition of space E n into subspaces E p, two-by- 
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Table 1. Geometrically Z-irreducible crystal families of spaces E 1...E 5 

The second, third, fourth, fifth and sixth columns give the gZ-irr, crystal families of types 1, 2, 3, 4 and 5, respectively, and their symbols and the 
• names of  the families belonging to the different considered spaces. The last column gives the numbers of  gZ-irr, crystal families belonging to each 

different considered space. 

Type 1 (1, 1, ...1) 

E 1 Segment 

E 2 Oblic 

E a Triclinic 
E 4 Hexaclinic 

E 5 Decaclinic 

Type 2 (2, 3 .. . . .  n) 

Square 
Hexagon 

Cubic 
Di iso hexagon 
Rhombotopic ( -  1/4) 
Hypercubic 4 

Rhombotopic ( -  1/5) 
Hypercubic 5 

Type 3 (2, 2 2, 2, 2, 3, 3) 

Monoclinic di square 
Monoclinic di hexagon 

Type 4 (2 ,2 '  ~ '  3--~') Type 5 (2',3',4',...,n') 

Diclinic di square Monoclinic di iso hexagon 
Diclinic di hexagon 

Decadic 
Monoclinic di iso square 

two orthogonal, of dimension p less than n; (2) the 
existence of the gZ-irr, crystal families of space E p for all 
the values of integer p less than or equal to n. The 
definition and the properties of the gZ-irr, crystal families 
and of the gZ-red, crystal families are given by Weigel & 
Veysseyre (1993) and recalled in the Appendix of 
Weigel & Veysseyre (1994). 

To make this paper easier to read, the gZ-irr, crystal 
families of one- to five-dimensional spaces are listed in 
Table 1, and an example of this construction for a gZ-red. 
crystal family of space E 4 follows. 

The different partitions of number 4 are as follows: 

4; 3 + 1 ;  2 + 2 ;  2 + 1 + 1 ;  1 + 1 + 1 + 1 .  

For instance, the partition 2 + 2 of number 4 gives the 
splitting for space E 4 

E 4 - -  E 2 ~ E 2. 

In space E 2, three gZ-crystal families can be found: 
the oblic family with a parallelogram cell; 
the square family with a square cell; 
the hexagon family with a hexagon cell. 
The rectangular product of two cells, identical or not, 

gives six cells generating the following six crystal 
families: 

the di oblic family; 
the di square family; 
the di hexagon family; 
the square oblic family; 
the hexagon oblic family; 
the hexagon square family. 
The adjective 'orthogonal' between the names of the 

two cells has been omitted in order to shorten the name 
of the crystal family. 

A number of precise rules for choosing the crystal 
family names, which were given by Weigel & Veysseyre 
(1993), are repeated below. In this paper, we consider the 
gZ-reducible crystal families, i.e. the families whose cells 
are the orthogonal products of two or more subcells. 

(1) If the subcells are all different from each other, the 
name of each crystal family thus obtained is the 
succession of the names of the subcells without the 
adjective 'orthogonal' between two names. 

(2) If some subcells are identical, we shorten the name 
by using the prefLxes di for two identical cells, tri for 
three identical cells etc. 

(3) When the cell is a right hyperprism based on a 
polytope of space E "-1, we shorten the name into 
polytope-al. A polytope is a generalized polyhedron, i.e. 
a polyhedron of space E" (Phan, Veysseyre & Weigel, 
1988). For instance, the crystal family of space E 3 whose 
cell is a right prism based on a hexagon (polygon of 
space E 2) is described as hexagonal. 

(4) A rectangular product being a commutative 
operation, the order of the subfamilies has no impor- 
tance. Nevertheless, we propose to start with the name of 
the family whose holohedry is of the highest order. This 
is why we have written hexagon square instead of square 
hexagon. In the same way, the suffix al comes last in the 
name of a right hyperprism based on a polytope. 

(5) Some suggestions have been given for the families 
constructed from the segment, i.e. the unique crystal 
family of space E 1. For instance, the rectangular product 
of two segments is the cell of the rectangle family (space 
E 2) and the rectangular product of three segments is the 
cell of the orthorhombic family (space E3). As regards 
space E", with n > 3, we suggest the general name 
orthotopic n, orthotope being the name of the general- 
ized right parallelepiped of space E n (Phan et al., 1988). 

On the other hand, the WPV (Weigel, Phan & 
Vesseyre) symbols of the holohedries follow the same 
rules and easily give the order of these groups (Weigel, 
Phan & Veysseyre, 1987). Here are two examples: 

(1) the WPV symbol of the holohedry of the square 
oblic family is 4mml2,  4mm being the symbol of the 
holohedry of the square family and 2 being the symbol of 
the oblic family; 

(2) the WPV symbol of the holohedry of the orthotopic 
4 family is m ± m 3_ m ± m. 
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These symbols enable us to find the order of the 
holohedry immediately. For instance: the order of the 
holohedry 4 m m _ k 2  is 8 x 2 = 1 6 ;  the order of the 
holohedry m _k m _k m _k m is: 2 x 2 x 2 x 2 = 16. 

I. Partition of  space E 6 

The ten existing partitions of the number 6 into a sum of 
integers less than 6 are 

5 + 1 ;  4 + 2 ;  3 + 3 ;  4 + 1 + 1 ;  3 + 2 + 1 ;  

2 + 2 + 2 ;  3 + 1 + 1 + 1 ;  2 + 2 + 1 + 1 ;  

2 + 1 + 1 + 1 + 1 ;  1 + 1 + 1 + 1 + 1 + 1 .  

To these, we must add the trivial partition corresponding 
to the number 6 itself. 

A decomposition of space E 6 into two-by-two 
orthogonal subspaces is associated with each of the ten 
partitions of the number 6. These splittings of space E 6 
generate the gZ-red, crystal families. On the other hand,  
the nonsplitting of space E 6, which corresponds to the 
trivial partition of the number 6, generates the gZ-irr. 
crystal families (these families will be studied in paper 
XVI). 

In §II, we study in detail some of these decompositions 
and summarize all the results in Table 2. This table lists 
the gZ-red, crystal families as well as their reducibility 
types. However, in order to construct the gZ-red, crystal 
families of space E 6, we need the list of all the gZ-irr. 
crystal families of space E p for all the values of the 
integer p < 6. This is why we listed these gZ-irr, crystal 
families in Table 1. In fact, this table summarizes the 
results obtained by Veysseyre et al. (1993) and Weigel & 
Veysseyre (1993). 

II. The gZ-reducible crystal families of  space E 6 

Let us consider the decomposition 6 = 5 + 1, which 
results in the splitting of space E 6 into two two-by-two 
orthogonal subspaces: 

E 6 = E 5 @ E I . 

First, we consider the gZ-irr, crystal families of space 
ES; there are three (see Table 1): 

the decaclinic crystal family; 
the hypercubic 5 crystal family; 
the rhombotopic ( -1/5)  crystal family. 
Second, we consider the unique crystal family of space 

E 1" the segment crystal family (see Table 1). The 
rectangular product of any gZ-irr, crystal family of 
space E 5 and of the segment crystal family gives a crystal 
family whose cell is a fight hype99rism based on the cell 
of the crystal family of space E". Therefore, we obtain 
the following three crystal families: 

the decaclinic-al crystal family; 

the hypercubic 5-al crystal family; 
the rhombotopic (-1/5)-al crystal family. 
Now we must find their reducibility types. To this 

purpose, we have to consider the irreducibility types of 
the three crystal families of space E s. The type of the first 
one is 1, 1, 1, 1, 1, whereas the type of the other two is 5 
[Weigel & Veysseyre (1993), Table 1]. Therefore, the 
irreducibility type of the decaclinic-al family is 
1 , 1 , 1 , 1 , 1  + 1, and the type of the other two is 
5 + 1. Moreover, this construction enables us to give a 
symbol to the family holohedry. As previously, we call 
this the WPV symbol (Weigel et al., 1987). The cell of a 
gZ-red, family is the rectangular product of two cells; 
therefore, the holohedry is the direct product of the two 
holohedries. We have used the symbol .1. to express this 
property. The WPV symbols of the holohedries of the 
three families that we have just described are 

]-s-Lm; (4 3 ~ , 88)3-5 _k m, (2,3m, 102)36_km. 

The order of these holohedries is the product of the order 
of the two holohedries of the subfamilies, i.e. 

2 x 2 = 4 for the first one, 

3840 x 2 = 7680 for the second one 

1440 x 2 = 2880 for the third one. 

All these results are easily obtained from our construc- 
tion. This is why we have adopted this method. These 
properties are summarized in Table 2(a). 

We also give the minimal number of parameters 
required to describe the crystal cell and we distinguish 
the parameters of length (the first number) from the 
angular parameters (the second number). For instance, 
the cell of the decaclinic-al crystal family depends on: 

six length parameters, five for the decaclinic cell and 
one for the segment; 

Ten angular parameters for the decaclinic cell, all the 
other angles being equal to zr/2. 

The cell of the hypercubic 5-al crystal family depends 
on: 

two length parameters, one for the hypercubic 5 crystal 
family and one for the segment; 

no angular parameter, all the angles being equal to 
n'/2. 

The rhombotopic ( -  1/5)-al crystal family has the same 
characteristic parameters. 

Finally, the last column of Table 2 gives the number of 
the family in Plesken's classification (Plesken & 
Hanrath, 1984). 

Let us study another example corresponding to the 
partition 6 - - 2  + 2 + 2. This corresponds to the 
splitting 

E 6 --- E 2 ~ E 2 ~ E 2. 

In Table 1, we have listed three gZ-irr, crystal families in 
space E 2, which are: 
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Table 2. Names of the geometrically Z-reducible crystal families 
The co lumns  g ive  the types  o f  gZ-reducibi l i ty ,  names  of  crys ta l  famil ies ,  W P V  symbols  o f  holohedr ies ,  orders  o f  ho lohedr ies ,  numbers  o f  

parameters  ( length p a r a m e t e r s +  angular  parameters )  and P lesken  class i f icat ion numbers ,  respec t ive ly .  

(a) E 6 = E 5 ~ E 1 

1,1, I, 1,1 + 1 Decaclinic - al 15 3- m __ 4 6 + 10 II 
5 + 1 Hypercubic 5 -  al (43 2 88)5-5 3- m 7680 2 + 0 LXXXV 

- ' _ _  

5 + 1 Rhombotopic ( -1/5)  - al (43m, 102)3-6 3- m 2880 2 + 0 LXXXVI 

(b) E 6 = E 4 @ E 2 

1, 1, 1, 1 + 1, 1 Hexaclinic oblic 14 3- 2 4 6 + 7 11I 
1, 1, 1, 1 + 2 Hexaclinic square ]4 3- 4mm 16 5 + 6 VI 
1, 1, 1, 1 + 2 Hexaclinic hexagon 14 3_ 6ram 24 5 + 6 VII 
2, 2 ~ + 1, 1 (Diclinic di square) oblic 44* 3_ 2 8 4 + 3 XIX 
2, 2 t + 1,-~] (Diclinic di hexagon) oblic 66" 3- 2 12 4 + 3 XX 
2, 2 + 1, 1 (Monoclinic di square) oblic 2, 44", 2 3- 2 16 4 + 2 XXVII 
2, 2 + 1,1 (Monoclinic di hexagon) oblic 2, 66", 2 3- 2 24 4 + 2 XXVIII 
2, 2 ~ + 2 (Diclinic di square) square 44" 3- 4mm 32 3 + 2 XXXVII] 
2 ~  r + 2 (Diclinic di hexagon) hexagon 66* 3- 6ram 72 3 + 2 XXXIX 
2-'~ t + 2 (Diclinic di square) hexagon 44" 3- 6mm 48 3 + 2 XL 

2, 2 '  + 2 (Diclinic di hexagon) square 66* 3- 4mm 24 3 + 2 XLI 
2, 2 + 2 (Monoclinie di square) square 2, 44", 2 3- 4mm 64 3 + 1 IL 

2,-'--2 + 2 (Monoelinic di hexagon) hexagon 2, 66", 2 3- 6ram 144 3 + 1 L 
2,--2 + 2 (Monoclinic di square) hexagon 2, 44", 2 3- 6mm 96 3 + 1 LI 
2,-'-2 + 2 (Monoclinic di hexagon) square 2, 66", 2 3- 4ram 96 3 + 1 LII 
2,--2 + 2 (Monoclinic di iso square) square 88, 2 3- 4mm 128 2 + 1 LXVII 
2,'--'2 + 2 (Monoclinic di iso hexagon) square 122, 2 3- 4ram 192 2 + I LXVUI 
2,"--2 + 2 (Monoclinic di iso square) hexagon 88, 2 3- 6mm 192 2 -t- 1 LXX 
2, 2 + 2 (Monoclinic di iso hexagon) hexagon 122,2 3_ 6mm 288 2 + 1 LXXI 
4 +  1,1 (Hypercubic 4) oblic m4-3~,88 3_ 2 764 3 + 1 LVII 
4 + 1,'---i (Di iso hexagon) oblic 6ram 3_ 6mm, 122 3_ 2 576 3 + 1 LVIII 
4 + 1,"--1 Rhombotopic ( -1/4)  oblic F~3m, 102 3_ 2 480 3 + 1 LIX 
4 t + 2 (Monoclinic di iso square) oblic 88, 2 3_ 2 32 3 + 2 XLI]I 
4 ~ + 2 (Monoclinic di iso hexagon) oblic 122, 2 3- 2 48 3 + 2 XLIV 
4 ~ + 2 Decadic oblic 102,2 3_ 2 40 3 + 2 XLV 
4 ~ + 2 Decadic square 102, 2 3- 4mm 160 2 + 1 LXIX 
4' + 2 Decadic hexagon 102,2.1_ 6ram 240 2 + 1 LXXII 

4 - 2  4 + 2 (Hypercubic 4) square ~ 3 ~,  88 3_ 4mm 3072 2 + 0 LXXIX 

4 + 2 (Di iso hexagon) square 6mm 3_ 6mm, 122 3_ 4mm 2304 2 + 0 LXXX 
4 + 2 Rhombotopic ( -1 /4)  square 43m, 102 3_ 4mm 1920 2 + 0 LXXXI 
4 + 2 (Hypercubic 4) hexagon ~ ~ 2 ,88  3- 6mm 4608 2 + 0 LXXXII 
4 + 2 (Di iso hexagon) hexagon 6mm 3- 6mm, 122 3_ 6mm 1728 2 + 0 LXXXIII 
4 + 2 Rhombotopic ( -1/4)  hexagon 43m, 102 3- 6mm 2880 2 + 0 LXXXIV 

(c) E 6 = E 3 (~ E 3 

1,1,1 + 1,1,1 Di triclinic ] 3_ i 4 6 + 6  IV 
4 - 2  3 + 1, 1, 1 Cubic triclinic ~ 3 ~ 3_ i 96 4 + 3 XXI 
4 - 2 3_ 4_ ~ _2 2304 2 + 0 LXXVIU 3 + 3 Di cubic ~ 3 ~ r, m 

(d) E 6 = E 4 @ E  x @ E  1 

1,1,1,1 + 1 + 1 Hexaclinic rectangle 14 3- m 3- m 8 6 + 6 V 
2,2 ~ + 1 + 1 (Diclinic di square) rectangle 44" 3_ m 3_ m 16 4 + 2 XXV 
2, 2 '  + 1 + 1 (Diclinic di hexagon) rectangle 66" 3_ m 3- m 24 4 + 2 XXVI 
2,2 + 1 + 1 (Monoclinic di square) rectangle 2,44",2 3_ m 3- m 32 4 + 1 XXXIII 
2, 2 + 1 + 1 (Monoclinic di hexagon) rectangle 2, 66 °, 2 3_ m 3_ m 48 4 + 1 XXXIV 
4 ~ + 1 + 1 (Monoclinie di iso square) rectangle 88, 2 3_ m 3_ m 64 3 + 1 LIV 

4' + 1 + 1 (Monoelinie di iso hexagon) rectangle 122,2 ± m 3_ m 96 3 + 1 LV 
4 ~ + 1 + 1 Decadic rectangle 102,2 3- m 3- m 80 3 + 1 LVI 
4 + 1 + 1 (Hypercubic 4) rectangle ~ 2 , 8 8  3_ m 3_ m 1536 3 + 0 LXIII 
4 + 1 + 1 (Di iso hexagon) rectangle 6mm 3_ 6mm, 122 3_ m 3_ m 1152 3 + 0 LXXIV 
4 + 1 + 1 Rhombotopic(- 1/4) rectangle F~3m, 102 3_ m 3_ m 960 3 LXXV 

(e) E 6 = E 3 @ E  2 @ E  1 

1,1,1 + 1,1 + 1 Triclinic oblic-al 1 3_ 2 3_ m 8 6 + 4 VIII 
1,1,1 + 2 + 1 Triclinic square-al ] 3_ 4mm 3_ m 32 5 + 3 XIV 
1,1,1 + 2 + 1 Triclinic hexagon-al i 3_ 6mm 3_ m 48 5 + 3 XV 

4 - 2  3 + 1, 1 + 1 Cubic oblic-al ~ 3 ~  3_ 2 3_ m 192 4 + 1 XLII 

3 + 2 + 1 Cubic square-al 4 ~ 2 3_ 4mm _L m 768 3 + 0 LXIV 

4 - 2 3- 6mm 3_ m 1152 3 + 0 LXV 3 + 2 + 1 Cubic hexagon-al ~ 3 
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( f )  E 6 = E 2 ~ E 2 ~) E 2 

1 , 1 + 1 , 1 + 1 , 1  

2 + 1 , 1 + 1 , 1  

2 + 1 , 1 + 1 , 1  

2 + 2 + 1 , 1  

2 + 2 + 1 , 1  

2 + 2 + 1 , 1  

2 + 2 + 2  

2 + 2 + 2  

2 + 2 + 2  

2 + 2 + 2  

Tri oblic 
Square di oblic 
Hexagon di oblic 
(Di square) oblic 
(Di hexagon) oblic 
Hexagon square oblic 
Tri square 
Tri hexagon 
Hexagon (di square) 
(Di hexagon) square 

(g) E 6 = E 3 @ E l @ E I @ E 1 

1 : 1 , 1 + I + 1 + 1  

3 + 1 + 1 + 1  

Triclinic orthorhombic 
Cubic orthorhombic 

(h) E 6 = E 2 ~ E  2 G E  1 @ E  1 

1, 1 + 1,1 + 1 + 1 Di oblic rectangle 
2 + 1, 1 + 1 + 1 Square oblic rectangle 
2 + 1, 1 + 1 + 1 Hexagon oblic rectangle 
2 + 2 + 1 + 1 Di square rectangle 
2 + 2 + 1 + 1 Di hexagon rectangle 
2 + 2 + 1 + 1 Hexagon square rectangle 

(i) E 6 = E 2 ~ E  1 ~ 3 E  1 @ E  1 @ E  1 

1 ~  + 1 + 1 + 1 + 1 Oblic (orthotopic 4) 

2 + 1 + 1 + 1 + 1 Square (orthotopic 4) 

2 + 1 + 1 + 1 + 1 Hexagon (orthotopic 4) 

( f )  E 6 = E  l ~ E  I @ E  I @ E  1 ~3E l ~ E  I 

1 + 1 + 1 + 1 + 1 + 1 Orthotopic 6 

Table 2 (cont.)  

2 1 2 . 1 . 2  8 6 + 3  IX 

4mm _1_ 2 ± 2 32 5 + 2 XVH 
6mm 2- 2.1_ 2 48 5 + 2 XVIII 

4mm 2. 4mm _1_ 2 128 4 + 1 XXXV 

6mm _1_ 6mm _1_ 2 288 4 + 1 XXXVI 

6mm ± 4mm _1_ 2 192 4 + 1 XXXVII  

4mm 2- 4mm ± 4mm 512 3 + 0 LX 

6mm _1_ 6mm 2- 6mm 1728 3 + 0 LXI 

6mm ± 4mm 2. 4mm 768 3 + 0 LXII 

6mm ± 6mm 2. 4mm 1152 3 + 0 LXIII 

i ± m 2 - m _ l _ m  16 6 + 3  X 
4~_2 ± m ± m _1_ m 384 3 + 1 LI[I 
r n  m 

2 ± 2 _1_ m ± m 16 6 + 2 XIII 

4mm 2_ 2 ± m / m 64 5 + 1 XXIII 

6mm 2- 2 2- m ± m 96 5 + 1 XXIV 

4mm _L 4mm _1_ m ± m 256 4 XLVI 

6ram ± 6mm _1_ m ± m 576 4 XLVII 

6mm _1_ 4mm ± m ± m 384 4 XLVIII 

2 Z m Z m ± m ± m  32 6 + 1  XVI 

4 m m Z m Z m Z m ± m  128 5 XXXI 

6 m m 2 - m 2 - m ± m ± m  192 5 XXXII 

m Z m Z m Z m Z m Z m  ~ 6 XXH 

the oblic crystal family; 
the square crystal family; 
the hexagon crystal family. 
We must make the orthogonal product of three cells, 

identical or not, selected among the previous three, for 
example the tri oblic crystal family and the hexagon di 
square crystal family. 

All the rules mentioned in the Introduct ion have 
obviously been respected: 

(i) the suffix di or tri if two or three subcells are the 
same; 

(ii) the cell order, for instance the hexagon, is written 
before the square, its point-group order being twelve, 
higher than that of the square which is eight; 

(iii) the adjective or thogona l  is not given between the 
names of  two cells. 

These crystal families as well as their characteristics 
are listed in Table 2 ( f  ). It is not very difficult to find the 
number of crystal families constructed from these three 
subcells: it is equal to ten, in fact, it is the number of 
combinations with repetitions of three elements taken 
three at a time, i.e. (3 

= = 10. 
3 

All the other cases of splittings of space E 6 have been 
similarly studied, the results are listed in Table 2. We 

only explain how the number of crystal families 
corresponding to each splitting of this space can be 
obtained. 

Spli t t ing E 6 = E 5 6) E 1 . There are three gZ-irr, crystal 
families in space E 5 which generate three gZ-red, crystal 
families in space E 6, as we explained in §2 [see Table 
2(a)]. 

Splitting E 6 =  E 4 6)E 2. There are eleven gZ-irr. 
crystal families in space E 4 and three in space E 2 
(Table 1), which generate 11 x 3 = 33 gZ-red, crystal 
families in space E 6 [see Table 2(b)]. 

Spli t t ing E 6 = E 3 6) E 3. There are two gZ-irr, crystal 
families in space E 3 (Table 1), which generate three gZ- 
red. crystal families in space E 6, three being the number 
of combinations with repetitions of three elements taken 
two at a time [see Table 2(c)]. 

Spli t t ing E 6 "- E 4 6) E 1 6) E 1 . There are eleven gZ-irr. 
crystal families in space E 4 and one in space E 1 (Table 
1), which generate eleven gZ-red, crystal families in 
space E 6 because the splitting E 1 6) E 1 only generates the 
rectangle family [see Table 2(d)]. 

Splitting E 6 =  E36)E26)E 1. There are two gZ-irr. 
crystal families in space E 3, three in space E 2 and one in 
space E 1, which generate 2 x 3 x 1 = 6 gZ-red, crystal 
families in space E 6 [see Table 2(e)]. 

Spli t t ing E 6 - -  E 2 6) E 2 6) E 2. There are three gZ-irr. 
crystal families in space E 2, which generate ten gZ-red. 
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crystal families in space E °, as explained in §II [see Table 
2( f ) ] .  

Splitting E 6 -- E 3 ~ E 1 ~ E 1 ~ E 1 . There are two gZ- 
irr. crystal families in space E 3 and one in space E l , 

which generate two gZ-red, crystal families in space E 6 
because the splitting E 1 ~ E 1 ~ E I only generates the 
orthorhombic crystal family [see Table 2(g)]. 

Splitting E 6 = E 2 ~ E 2 ~ E I ~ E 1. There are three 
gZ-irr, crystal families in space E 2 and one in space E 1 
which generate six gZ-red, crystal families in space E 6. 
Indeed, the splitting E 2 E)E 2 generates six crystal 
families, six being the number of combinations with 
repetitions of three elements taken two at a time, whereas 
the splitting E 1 ~ E  1 only generates the rectangular 
crystal family [see Table 2(h)]. 

Splitting E 6 --- E 2 ~ E 1 ~ E 1 @ E t ~ E 1 . There are 
three gZ-ir, crystal families in space E 2 and one in 
space E 1. The splitting E 1 ~ E 1 ~ E 1 ~ E 1 only gen- 
erates the orthotopic 4 crystal family; therefore, we 
obtain three gZ-red, crystal families in space E 6 [see 
Table 2(i)]. 

Splitting E 6 - - E  1 ~ E 1 ~ E 1 ~ E 1 ~ E 1 ~ E 1. This 
splitting_ generates the orthotopic 6 crystal family of 
space E 6 [see Table 2( j )] .  

Concluding remarks 

The geometrical method that introduced by Veysseyre et 
al. (1993) and Weigel & Vesseyre (1993) is a convenient 
and powerful means to construct all the gZ-red, crystal 
families of space E"; this method enables us to describe 
the cell of the crystal family and to give a name to this 
family as well as a symbol to its holohedry. Moreover, 
we can summarize the previous results by mentioning the 
number of crystal families belonging to each type of 
splitting of space E 6. This enables us to prove the results 
given in Table 3 of Weigel & Veysseyre (1993). 
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Abstract 

The excellent agreement between experimental 
Umweganregung patterns and those calculated with 
UMWEG90 [Rossmanith (1992). Acta Cryst. A48,  
596--610] has been demonstrated by Rossmanith, 
Adiwidjaja, Eck, Kumpat & Ulrich [J. Appl. Cryst. 

(1994), 27, 510--516]. It has also been shown that, by 
fitting calculated to experimental ap scans, consistent and 
physically significant parameters for the mosaic-structure 
parameters of the sample - mosaic spread and mosaic- 
block size - and for the divergence parameter of the 
X-ray beam can be obtained. In this paper, it is shown 
that, furthermore, the relative intensities of ~ scans of 
different forbidden reflections of a particular sample are 
predicted satisfactorily with UMWEG90 using the 
parameters obtained in the previously mentioned paper. 
To make an appraisal of the possible maximum gain due 
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to Umweganregung,  o.r-20--ap scans of 14 forbidden 
reflections of a particular zinc sample were analysed. By 
comparison of the o9-20 intensity profiles and integrated 
intensities of the multiple diffraction events with those of 
the rocking curves of 15 Bragg reflections with 
neighbouring Bragg angles, the statements given in 
standard textbooks, that the profiles of Umweganregung 
events are much sharper and the intensities much smaller 
than those of possible Bragg reflections, are disproved. 

Introduction 

For the determination of distortions of atomic charge 
densities from spherical symmetry due to anharmonic 
motion and chemical bonding, very weak 'almost 
forbidden' as well as weak high-order Bragg reflections 
have to be measured. These weak intensities may be 
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